

Fused Deposition Modeling: A new technology for the fabrication of microwave loads ?

Lab-STICC / UBO

Y. Arbaoui R. Gingat A. Pen D. Palessonga A. Maalouf A. Chevalier P. Queffelec **V. Laur**

IRDL / UBO

P. Agaciak P. Roquefort J. Ville T. Aubry

SPCD 2018

Fabrication and measurements

- X-band pyramidal loads
- K-band tapered wedge loads
- X-band compact loads
- Conclusion and prospects

Microwave loads

- One port device
- Applications: isolators, couplers, metrology...
- Rectangular waveguide: short-ended waveguide + absorbers
- Characteristics: RL (or VSWR), Power Handling, BW, Size, Cost

Examples of absorber shape

Additive technology: a low-cost way to shape absorbers

SPCD 2018 3/19

Fused Deposition Modeling

- Low-cost technology
- Layer-by-layer deposition of a fused polymer
- Thickness of layer: 50 to 200 μm

FDM principle

RepRap Asimov

3NTR A4

Printable materials

- A lot of commercial references (mainly ABS, PLA)
- Pure polymers not of interest (low to medium losses)
- Composite materials (carbon, ferromagnetic particles): potential candidates for microwave absorption
- Selected material: Carbon-loaded ABS (Torwell)
- > 3D printers: RepRap Asimov, Leapfrog Creatr HS, Makerbot Replicator 2X

- EM properties: standard coaxial line method
- Dispersive dielectric properties
- X-band (8-12 GHz):
 - \succ $\epsilon_r = 10$
 - tanδ = 0.27

X-band pyramidal loads

- Hybrid load: pyramidal absorber + short-ended waveguide
- Full 3D printed load: 3D printing of absorber + waveguide + flange

Hybrid load

Full 3D printed load

X-band pyramidal loads

Rugosity: profilometer Veeco Dektak 150

Zone	R _a (μm)	R _q (μm)
1	43.6	51.9
2	37.5	43.0
3	16.4	22.3
4	10.4	14.0

Measured rugosity of a full 3D printed load

- Printing axis: z
- > Higher rugosity along printing axis (mechanical polishing of tip)
- > Flange sufficiently smooth to ensure a good contact

SPCD 2018 7/19

X-band pyramidal loads

Microwave measurements

Comparison of measured VSWR

- > Hybrid load: VSWR < 1.075
- Agilent and full 3D printed loads: VSWR < 1.025
- Consistent with simulations
- Cost: 10 to 100 times cheaper than commercial loads

X-band pyramidal loads

Power handling

Test bench and measured power handling at 10 GHz

- Max Power available 11.5 W / Measurement of reflected power P_r as a function of incident power P_{in} à 10 GHz
- > Linear behavior of P_r/P_{in}
- > No degradation up to 11.5 W

SPCD 2018 9/19

Increase of frequency: K-band ?

- Decrease of load size (WR-42 waveguide)
- Reproducibility issues

(I = 50 mm)

> Avoid printing of tip

C K-band tapered wedge load

Influence of printing parameters

Printed load with a layer thickness of 50 μm and 100 μm

<i>e</i> _{lay} (µm)	50	100
$R_{a}(\mu m)$	10.7	37.4
$\sigma_{Ra} (\mu m)$	2.3	27.6
$R_{q}(\mu m)$	13.6	46.5
$\sigma_{Rq} (\mu m)$	3.6	29.6

Comparison of rugosity for two different layer thicknesses

> Optimization of printing parameters => Control of rugosity and random defects

C K-band tapered wedge load

Microwave measurements

Characterization cell

Comparison of reflection coefficient of 6 printed loads between 18 and 26.5 GHz

- > RL > 33.5 dB for 6 loads printed in the same conditions
- > Good reproducibility (without post-machining)

SPCD 2018 12/19

C Ka-band E-plane wedge load

Cartering Control C

Reflection coefficient in Ka-band

- > RL > 27 dB at 30 GHz
- > Fast development and fabrication
- > Modular design / Adjustment of RL levels as a function of length

SPCD 2018 13/19

Compact X-band load

- Decrease of size: complex topologies by 3D printing ?
- Discretization of absorber in the transverse plane (blocs with different lengths)

Topology description of a 4x3 structure

Reflection coefficient of different configurations

- > Several possible configurations / Design using EM optimizer
- > Simulation: length divided by 4 / classical topology (pyramid)
- > Measurement: length divided by 2 (very sensitive structure / air gaps, dimensions variations)

SPCD 2018 14/19

- ➡ FDM technology: promising low-cost and easy-to-use technology for the fabrication of microwave load
- **Several commercial printable composite materials with appropriate EM properties**
- Useable up to 40 GHz (and more ?)
- Complex topologies: decrease of size and weight

Concept limitations:

- Limited resolution: complex topologies at high frequencies ?
- Maximum working temperatures of printable materials (60°C for PLA and 100°C for ABS) => Development of new materials

SPCD 2018 15/19

➡ Development of Fe₂₀-PPS₈₀ printable composites

- ⇒ PPS: high working temperature (240°C), high chemical resistance, fire resistant...
- \fbox Hot mixing of iron particles (5-6 $\mu m)$ and PPS polymer
- Elaboration of printable filament

PPS-Fe filament

Toroidal sample printed in PPS-Fe

SPCD 2018 16/19

PPS-Fe microwave properties

- > X-band properties:
 - ε_r = 6.1
 - $\mu_r = 1.2$
 - $tan\delta_{\epsilon} = 0.02$
 - $tan\delta_{\mu} = 0.32$

SPCD 2018 17/19

- Useable as a temperature-stable microwave absorber
- > PPS-Fe loads under progress

Other applications of the technology: plane-wave absorbers

Printed honeycomb microwave absorbers

Printed grazing incidence millimeter-wave absorbers

SPCD 2018 18/19

Acknowledgements

ANR ASTRID 3DRAM

Ccnes

Thank you for your attention

SPCD 2018 19/19

